Skip to main content

Subtree of Another Tree(LeetCode)

Problem Statement​

Given the roots of two binary trees root and subRoot, return true if there is a subtree of root with the same structure and node values of subRoot and false otherwise.

A subtree of a binary tree tree is a tree that consists of a node in tree and all of this node's descendants. The tree tree could also be considered as a subtree of itself.

Examples​

Example 1:

image

Input: root = [3,4,5,1,2], subRoot = [4,1,2]
Output: true

Example 2:

image

Input: root = [3,4,5,1,2,null,null,null,null,0], subRoot = [4,1,2]
Output: false

Constraints​

  • The number of nodes in the root tree is in the range [1, 2000].
  • The number of nodes in the subRoot tree is in the range [1, 1000].
  • -104 <= root.val <= 104
  • -104 <= subRoot.val <= 104

Solution​

The problem is to determine whether one binary tree (subRoot) is a subtree of another binary tree (root). We will discuss two solutions: a naive approach and an optimized approach using serialization and the KMP algorithm.

Approach 1: Naive Solution​

Algorithm​

  1. Traverse each node in the main tree (root).
  2. For each node, check if the subtree rooted at this node matches subRoot using a helper function.
  3. The helper function recursively checks if two trees are identical by comparing the current nodes and their left and right subtrees.
  4. Return true if any subtree matches subRoot, otherwise return false.

Implementation​

class Solution {
public boolean isSubtree(TreeNode root, TreeNode subRoot) {
if (root == null) return false;
if (isSameTree(root, subRoot)) return true;
return isSubtree(root.left, subRoot) || isSubtree(root.right, subRoot);
}

private boolean isSameTree(TreeNode s, TreeNode t) {
if (s == null && t == null) return true;
if (s == null || t == null) return false;
if (s.val != t.val) return false;
return isSameTree(s.left, t.left) && isSameTree(s.right, t.right);
}
}

Complexity Analysis​

  • Time complexity: O(M∗N)O(M * N) - where M is the number of nodes in root, and N is the number of nodes in subRoot.
  • Space complexity: O(H)O(H) - where H is the height of root due to the recursion stack.

Approach 2: Serialize in Preorder then KMP​

Algorithm​

  1. Serialize both root and subRoot using preorder traversal, including markers for null nodes to ensure uniqueness of the serialization.
  2. Use the KMP (Knuth-Morris-Pratt) algorithm to check if the serialized string of subRoot is a substring of the serialized string of root.

Implementation​

class Solution {
public boolean isSubtree(TreeNode root, TreeNode subRoot) {
String tree1 = serialize(root);
String tree2 = serialize(subRoot);
return kmp(tree1, tree2);
}

private String serialize(TreeNode root) {
StringBuilder sb = new StringBuilder();
serializeHelper(root, sb);
return sb.toString();
}

private void serializeHelper(TreeNode root, StringBuilder sb) {
if (root == null) {
sb.append("#,");
return;
}
sb.append(root.val).append(",");
serializeHelper(root.left, sb);
serializeHelper(root.right, sb);
}

private boolean kmp(String s, String p) {
int[] lps = buildLPS(p);
int i = 0, j = 0;
while (i < s.length()) {
if (s.charAt(i) == p.charAt(j)) {
i++;
j++;
}
if (j == p.length()) {
return true;
} else if (i < s.length() && s.charAt(i) != p.charAt(j)) {
if (j != 0) {
j = lps[j - 1];
} else {
i++;
}
}
}
return false;
}

private int[] buildLPS(String p) {
int[] lps = new int[p.length()];
int len = 0, i = 1;
while (i < p.length()) {
if (p.charAt(i) == p.charAt(len)) {
len++;
lps[i] = len;
i++;
} else {
if (len != 0) {
len = lps[len - 1];
} else {
lps[i] = 0;
i++;
}
}
}
return lps;
}
}

Complexity Analysis​

  • Time complexity: O(M+N)O(M + N)
  • Space complexity: O(M+N)O(M + N)

Conclusion​

  • The Naive Solution is straightforward but less efficient for large trees due to its O(M * N) time complexity.
  • The Optimized Solution using serialization and KMP is more efficient with a time complexity of O(M + N), making it suitable for larger trees.
  • Both solutions have linear space complexity relative to the size of the trees they handle.