Bitonic Sort Algorithm
What is the Bitonic Sort Algorithm?
Bitonic Sort is a parallel sorting algorithm that is efficient for hardware implementation. It works by recursively sorting two halves of the array into a bitonic sequence (one half in ascending order and the other in descending order) and then merging them into a single sorted sequence.
Algorithm Steps
-
Bitonic Sequence:
- Divide the array into two halves.
- Recursively sort one half in ascending order and the other half in descending order to form a bitonic sequence.
-
Bitonic Merge:
- Compare and swap elements to merge the bitonic sequence into a single sorted sequence.
-
Recursive Sorting:
- Apply the bitonic sequence and bitonic merge steps recursively until the entire array is sorted.
Complexity Analysis
- Time Complexity: in the worst case.
- Space Complexity: auxiliary space due to the recursive calls.
Example
Given an unsorted array:
array = [4, 3, 2, 1]
Using the Bitonic Sort Algorithm:
- Create bitonic sequences:
[4, 3]
(ascending),[2, 1]
(descending) - Merge bitonic sequences:
[3, 4]
and[1, 2]
to[1, 2, 3, 4]
Implementation
- Python
- C++
def bitonic_sort(arr, low, cnt, direction):
if cnt > 1:
k = cnt // 2
bitonic_sort(arr, low, k, 1)
bitonic_sort(arr, low + k, k, 0)
bitonic_merge(arr, low, cnt, direction)
def bitonic_merge(arr, low, cnt, direction):
if cnt > 1:
k = cnt // 2
for i in range(low, low + k):
if (direction == 1 and arr[i] > arr[i + k]) or (direction == 0 and arr[i] < arr[i + k]):
arr[i], arr[i + k] = arr[i + k], arr[i]
bitonic_merge(arr, low, k, direction)
bitonic_merge(arr, low + k, k, direction)
def sort(arr, N, up):
bitonic_sort(arr, 0, N, up)
# Example usage:
array = [4, 3, 2, 1]
sort(array, len(array), 1)
print(array) # Output: [1, 2, 3, 4]
#include <iostream>
#include <vector>
void bitonicMerge(std::vector<int>& arr, int low, int cnt, bool dir) {
if (cnt > 1) {
int k = cnt / 2;
for (int i = low; i < low + k; i++) {
if (dir == (arr[i] > arr[i + k])) {
std::swap(arr[i], arr[i + k]);
}
}
bitonicMerge(arr, low, k, dir);
bitonicMerge(arr, low + k, k, dir);
}
}
void bitonicSort(std::vector<int>& arr, int low, int cnt, bool dir) {
if (cnt > 1) {
int k = cnt / 2;
bitonicSort(arr, low, k, true);
bitonicSort(arr, low + k, k, false);
bitonicMerge(arr, low, cnt, dir);
}
}
void sort(std::vector<int>& arr, int N, bool up) {
bitonicSort(arr, 0, N, up);
}
int main() {
std::vector<int> array = {4, 3, 2, 1};
sort(array, array.size(), true);
for (int num : array) {
std::cout << num << " ";
}
std::cout << std::endl; // Output: 1 2 3 4
return 0;
}
Conclusion
Bitonic Sort is an efficient parallel sorting algorithm with a consistent ( O(n \log^2 n) ) time complexity. It is well-suited for hardware implementations and can be useful in parallel computing environments.