Binary Tree Right Side View Solution
Problem Description​
Given the root of a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.
Examples​
Example 1:
Input: root = [1,2,3,null,5,null,4]
Output: [1,3,4]
Example 2:
Input: root = [1,null,3]
Output: [1,3]
Example 3:
Input: root = []
Output: []
Constraints​
- The number of nodes in the tree is in the range
[0, 100]
. - Node.val
Solution for Binary Tree Right Side View Problem​
Intuition​
The intuition behind the solution is to perform a level-order traversal (BFS) of the binary tree and record the value of the last node at each level, which represents the view from the right side.
Approach​
- Initialize an empty result list to store the right side view of the tree.
- Perform a level-order traversal (BFS) of the tree.
- At each level, record the value of the last node in the result list.
- Return the result list.
Code in Different Languages​
- Python
- Java
- C++
from collections import deque
class TreeNode(object):
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution(object):
def rightSideView(self, root):
result = []
if not root:
return result
queue = deque([root])
while queue:
level_length = len(queue)
for i in range(level_length):
node = queue.popleft()
if i == level_length - 1:
result.append(node.val)
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
return result
import java.util.*;
class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode() {}
TreeNode(int val) { this.val = val; }
TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
class Solution {
public List<Integer> rightSideView(TreeNode root) {
List<Integer> result = new ArrayList<>();
if (root == null) return result;
Queue<TreeNode> queue = new LinkedList<>();
queue.add(root);
while (!queue.isEmpty()) {
int size = queue.size();
for (int i = 0; i < size; i++) {
TreeNode node = queue.poll();
if (i == size - 1) result.add(node.val);
if (node.left != null) queue.add(node.left);
if (node.right != null) queue.add(node.right);
}
}
return result;
}}
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
class Solution {
public:
vector<int> rightSideView(TreeNode* root) {
vector<int> result;
if (!root) return result;
queue<TreeNode*> q;
q.push(root);
while (!q.empty()) {
int size = q.size();
for (int i = 0; i < size; ++i) {
TreeNode* node = q.front();
q.pop();
if (i == size - 1) result.push_back(node->val);
if (node->left) q.push(node->left);
if (node->right) q.push(node->right);
}
}
return result;
}
};
Complexity Analysis​
- Time complexity: The time complexity of the solution is , where N is the number of nodes in the binary tree. This is because we visit each node exactly once during the level-order traversal.
- Space complexity: The space complexity of the solution is , where N is the number of nodes in the binary tree. This is because the space used by the queue for level-order traversal can be at most N in the worst case.
References​
- LeetCode Problem: LeetCode Problem
- Solution Link: Binary Tree Right Side View Solution on LeetCode
- Authors GeeksforGeeks Profile: Mahek Patel