Last Moment Before All Ants Fall Out of a Plank
In this page, we will solve the Last Moment Before All Ants Fall Out of a Plank problem using different approaches: a simple maximum calculation for left and right ants. We will provide the implementation of the solution in JavaScript, TypeScript, Python, Java, C++, and more.
Problem Description​
We have a wooden plank of the length n
units. Some ants are walking on the plank, each ant moves with a speed of 1 unit per second. Some of the ants move to the left, the others move to the right.
When two ants moving in two different directions meet at some point, they change their directions and continue moving again. Assume changing directions does not take any additional time.
When an ant reaches one end of the plank at a time t
, it falls out of the plank immediately.
Given an integer n
and two integer arrays left
and right
, the positions of the ants moving to the left and the right, return the moment when the last ant(s) fall out of the plank.
Examples​
Example 1:
Input: n = 4, left = [4,3], right = [0,1]
Output: 4
Explanation:
- The ant at index 0 is named A and going to the right.
- The ant at index 1 is named B and going to the right.
- The ant at index 3 is named C and going to the left.
- The ant at index 4 is named D and going to the left.
The last moment when an ant was on the plank is t = 4 seconds. After that, it falls immediately out of the plank. (i.e., We can say that at t = 4.0000000001, there are no ants on the plank).
Example 2:
Input: n = 7, left = [], right = [0,1,2,3,4,5,6,7]
Output: 7
Explanation: All ants are going to the right, the ant at index 0 needs 7 seconds to fall.
Example 3:
Input: n = 7, left = [0,1,2,3,4,5,6,7], right = []
Output: 7
Explanation: All ants are going to the left, the ant at index 7 needs 7 seconds to fall.
Constraints​
- All values of
left
andright
are unique, and each value can appear only in one of the two arrays.
Solution for Last Moment Before All Ants Fall Out of a Plank​
Intuition and Approach​
The key insight is that we can ignore the direction changes of ants when they meet. The last ant to fall off will be either the furthest ant moving to the left or the furthest ant moving to the right. Therefore, we need to find the maximum distance any ant has to travel to fall off the plank.
- Maximum Calculation
- Simulation
Approach 1: Maximum Calculation​
We calculate the maximum distance for the ants moving to the left and to the right and return the larger of the two.
Implementation​
function lastMomentBeforeAllAntsFallOut() { const n = 4; const left = [4, 3]; const right = [0, 1]; const getLastMoment = function(n, left, right) { const maxLeft = left.length > 0 ? Math.max(...left) : 0; const maxRight = right.length > 0 ? n - Math.min(...right) : 0; return Math.max(maxLeft, maxRight); }; const result = getLastMoment(n, left, right); return ( <div> <p> <b>Input:</b> n = {n}, left = {JSON.stringify(left)}, right = {JSON.stringify(right)} </p> <p> <b>Output:</b> {result} </p> </div> ); }
Code in Different Languages​
- JavaScript
- TypeScript
- Python
- Java
- C++
function getLastMoment(n, left, right) {
const maxLeft = left.length > 0 ? Math.max(...left) : 0;
const maxRight = right.length > 0 ? n - Math.min(...right) : 0;
return Math.max(maxLeft, maxRight);
}
function getLastMoment(n: number, left: number[], right: number[]): number {
const maxLeft = left.length > 0 ? Math.max(...left) : 0;
const maxRight = right.length > 0 ? n - Math.min(...right) : 0;
return Math.max(maxLeft, maxRight);
}
class Solution:
def getLastMoment(self, n: int, left: List[int], right: List[int]) -> int:
max_left = max(left) if left else 0
max_right = n - min(right) if right else 0
return max(max_left, max_right)
class Solution {
public int getLastMoment(int n, int[] left, int[] right) {
int maxLeft = left.length > 0 ? Arrays.stream(left).max().getAsInt() : 0;
int maxRight = right.length > 0 ? n - Arrays.stream(right).min().getAsInt() : 0;
return Math.max(maxLeft, maxRight);
}
}
class Solution {
public:
int getLastMoment(int n, vector<int>& left, vector<int>& right) {
int maxLeft = left.empty() ? 0 : *max_element(left.begin(), left.end());
int maxRight = right.empty() ? 0 : n - *min_element(right.begin(), right.end());
return max(maxLeft, maxRight);
}
};
Complexity Analysis​
- Time Complexity: , where
L
is the length of theleft
array andR
is the length of theright
array. - Space Complexity: , as we are only using a few extra variables.
Approach 2: Simulation​
We can simulate the movement of ants on the plank to observe their behavior and determine the last moment before all ants fall off.
Implementation​
function lastMomentBeforeAllAntsFallOut() { const n = 4; const left = [4, 3]; const right = [0, 1]; const getLastMoment = function(n, left, right) { const positions = Array(n + 1).fill(0); for (let pos of left) positions[pos] = 1; for (let pos of right) positions[pos] = 2; let lastMoment = 0; for (let i = 0; i <= n; i++) { if (positions[i] === 1) lastMoment = Math.max(lastMoment, i); if (positions[i] === 2) lastMoment = Math.max(lastMoment, n - i); } return lastMoment; }; const result = getLastMoment(n, left, right); return ( <div> <p> <b>Input:</b> n = {n}, left = {JSON.stringify(left)}, right = {JSON.stringify(right)} </p> <p> <b>Output:</b> {result} </p> </div> ); }
Code in Different Languages​
- JavaScript
- TypeScript
- Python
- Java
- C++
function get
LastMoment(n, left, right) {
const positions = Array(n + 1).fill(0);
for (let pos of left) positions[pos] = 1;
for (let pos of right) positions[pos] = 2;
let lastMoment = 0;
for (let i = 0; i <= n; i++) {
if (positions[i] === 1) lastMoment = Math.max(lastMoment, i);
if (positions[i] === 2) lastMoment = Math.max(lastMoment, n - i);
}
return lastMoment;
}
function getLastMoment(n: number, left: number[], right: number[]): number {
const positions = Array(n + 1).fill(0);
for (let pos of left) positions[pos] = 1;
for (let pos of right) positions[pos] = 2;
let lastMoment = 0;
for (let i = 0; i <= n; i++) {
if (positions[i] === 1) lastMoment = Math.max(lastMoment, i);
if (positions[i] === 2) lastMoment = Math.max(lastMoment, n - i);
}
return lastMoment;
}
class Solution:
def getLastMoment(self, n: int, left: List[int], right: List[int]) -> int:
positions = [0] * (n + 1)
for pos in left:
positions[pos] = 1
for pos in right:
positions[pos] = 2
last_moment = 0
for i in range(n + 1):
if positions[i] == 1:
last_moment = max(last_moment, i)
if positions[i] == 2:
last_moment = max(last_moment, n - i)
return last_moment
class Solution {
public int getLastMoment(int n, int[] left, int[] right) {
int[] positions = new int[n + 1];
for (int pos : left) positions[pos] = 1;
for (int pos : right) positions[pos] = 2;
int lastMoment = 0;
for (int i = 0; i <= n; i++) {
if (positions[i] == 1) lastMoment = Math.max(lastMoment, i);
if (positions[i] == 2) lastMoment = Math.max(lastMoment, n - i);
}
return lastMoment;
}
}
class Solution {
public:
int getLastMoment(int n, vector<int>& left, vector<int>& right) {
vector<int> positions(n + 1, 0);
for (int pos : left) positions[pos] = 1;
for (int pos : right) positions[pos] = 2;
int lastMoment = 0;
for (int i = 0; i <= n; i++) {
if (positions[i] == 1) lastMoment = max(lastMoment, i);
if (positions[i] == 2) lastMoment = max(lastMoment, n - i);
}
return lastMoment;
}
};
Complexity Analysis​
- Time Complexity: , where
L
is the length of theleft
array andR
is the length of theright
array. - Space Complexity: , where
N
is the length of the plank.
By using a simple maximum calculation approach or a simulation approach, we can efficiently solve the Last Moment Before All Ants Fall Out of a Plank problem. The choice of implementation language depends on the specific requirements and constraints of the problem.
References​
- LeetCode Problem: Last Moment Before All Ants Fall Out of a Plank
- Solution Link: Last Moment Before All Ants Fall Out of a Plank Solution on LeetCode
- Authors LeetCode Profile: Manish Kumar Gupta