785. Is Graph Bipartite?
Problem Description​
There is an undirected graph with n nodes, where each node is numbered between 0 and n - 1. You are given a 2D array graph, where graph[u] is an array of nodes that node u is adjacent to. More formally, for each v in graph[u], there is an undirected edge between node u and node v. The graph has the following properties:
There are no self-edges (graph[u] does not contain u). There are no parallel edges (graph[u] does not contain duplicate values). If v is in graph[u], then u is in graph[v] (the graph is undirected). The graph may not be connected, meaning there may be two nodes u and v such that there is no path between them. A graph is bipartite if the nodes can be partitioned into two independent sets A and B such that every edge in the graph connects a node in set A and a node in set B.
Return true if and only if it is bipartite.
Examples​
Example 1:
Input: graph = [[1,2,3],[0,2],[0,1,3],[0,2]]
Output: false
Explanation: There is no way to partition the nodes into two independent sets such that every edge connects a node in one and a node in the other.
Constraints​
graph.length == n
1 <= n <= 100
0 <= graph[u].length < n
0 <= graph[u][i] <= n - 1
graph[u] does not contain u.
All the values of graph[u] are unique.
If graph[u] contains v, then graph[v] contains u.
Solution for 785. Is Graph Bipartite?​
- Solution
Implementation​
function Solution(arr) { function dfs(graph, node, colors, color) { colors[node] = color; for (const neighbor of graph[node]) { if (colors[neighbor] === color) { return false; } if (!colors[neighbor]) { if (!dfs(graph, neighbor, colors, -color)) { return false; } } } return true; } isBipartite = function(graph) { const n = graph.length; const colors = new Array(n).fill(0); for (let i = 0; i < n; i++) { if (!colors[i]) { if (!dfs(graph, i, colors, 1)) { return false; } } } return true; } const input =[[1,2,3],[0,2],[0,1,3],[0,2]] const output = isBipartite(input) return ( <div> <p> <b>Input: </b> {JSON.stringify(input)} </p> <p> <b>Output:</b> {output.toString()} </p> </div> ); }
Complexity Analysis​
- Time Complexity:
- Space Complexity:
Code in Different Languages​
- Python
- Java
- C++
from typing import List
from collections import deque
class Solution:
def isBipartite(self, gr: List[List[int]]) -> bool:
n = len(gr)
colour = [0] * n
for node in range(n):
if colour[node] != 0:
continue
q = deque()
q.append(node)
colour[node] = 1
while q:
cur = q.popleft()
for ne in gr[cur]:
if colour[ne] == 0:
colour[ne] = -colour[cur]
q.append(ne)
elif colour[ne] != -colour[cur]:
return False
return True
import java.util.ArrayDeque;
import java.util.Queue;
class Solution {
public boolean isBipartite(int[][] gr) {
int n = gr.length;
int[] colour = new int[n];
for (int node = 0; node < n; node++) {
if (colour[node] != 0) {
continue;
}
Queue<Integer> q = new ArrayDeque<>();
q.add(node);
colour[node] = 1;
while (!q.isEmpty()) {
int cur = q.poll();
for (int ne : gr[cur]) {
if (colour[ne] == 0) {
colour[ne] = -colour[cur];
q.add(ne);
} else if (colour[ne] != -colour[cur]) {
return false;
}
}
}
}
return true;
}
}
class Solution {
public:
bool check(int start,vector<vector<int>>& adj,vector<int>& color){
queue<int>q;
color[start]=0;
q.push(start);
while(!q.empty()){
int prev=q.front();
q.pop();
for(auto curr: adj[prev]){
if(color[curr]==-1){
color[curr]=!color[prev];
q.push(curr);
}
else if(color[curr]==color[prev]) return false;
}
}
return true;
}
bool isBipartite(vector<vector<int>>& adj) {
int n=adj.size();
vector<int> color(n,-1);
for(int i=0;i<n;i++){
if(color[i]==-1 && !check(i,adj,color)) return false;
}
return true;
}
};
References​
-
LeetCode Problem: 785. Is Graph Bipartite?
-
Solution Link: LeetCode Solution