Validate Binary Search Tree
Problem Description​
Given the root of a binary tree, determine if it is a valid binary search tree (BST).
A valid BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Examples​
Example 1:
Input: root = [2,1,3]
Output: true
Example 2:
Input: root = [5,1,4,null,null,3,6]
Output: false
Constraints​
- The number of nodes in the tree is in the range .
- .
Approach​
To solve this problem(valid BST) we will do the inorder traversal of the tree as we know in a binary search tree the array of elements which we get after inorder traversal they will be in sorted order so after the inorder traversal we will just have check if the inorder traversal of the given binary search is in sorted order or not.
Code in C++​
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
* right(right) {}
* };
*/
class Solution {
public:
// Function for inorder traversal
void inorder(TreeNode* root , vector<int>&a){
if(root==NULL){
return;
}
inorder(root->left,a);
a.push_back(root->val);
inorder(root->right,a);
}
bool isValidBST(TreeNode* root) {
vector<int>a,b;
inorder(root,a);
b=a;
for(int i=1;i<a.size();i++){
if(a[i]==a[i-1]){ // it helps us to check that elements in given tree is not equal for valid BST
return false;
}
}
sort(b.begin(),b.end());
for(int i=0;i<b.size();i++){
if(b[i]!=a[i]){
return false;
}
}
return true;
}
};