Interleaving Strings
Problem Description​
| Problem Statement | Solution Link | LeetCode Profile |
|---|---|---|
| Interleaving-Strings | Interleaving-Strings Solution on LeetCode | Nikita Saini |
Problem Description​
Given strings s1, s2, and s3, determine whether s3 is formed by an interleaving of s1 and s2.
An interleaving of two strings s and t is a configuration where s and t are divided into n and m substrings respectively, such that:
s = s1 + s2 + ... + snt = t1 + t2 + ... + tm|n - m| <= 1
The interleaving is s1 + t1 + s2 + t2 + s3 + t3 + ... or t1 + s1 + t2 + s2 + t3 + s3 + ....
Note: a + b is the concatenation of strings a and b.
Examples​
Example 1:​
Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac"
Output: true
Explanation:
One way to obtain s3 is:
Split s1 into s1 = "aa" + "bc" + "c", and s2 into s2 = "dbbc" + "a".
Interleaving the two splits, we get "aa" + "dbbc" + "bc" + "a" + "c" = "aadbbcbcac".
Since s3 can be obtained by interleaving s1 and s2, we return true.
Example 2:​
Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc"
Output: false
Explanation:
Notice how it is impossible to interleave s2 with any other string to obtain s3.
Example 3:​
Input: s1 = "", s2 = "", s3 = ""
Output: true
Constraints​
- , , and consist of lowercase English letters.$
Approach​
To determine if s3 is an interleaving of s1 and s2, we can use dynamic programming. We define a 2D boolean DP array dp where dp[i][j] represents whether s3[0:i+j] can be formed by interleaving s1[0:i] and s2[0:j].
Step-by-Step Algorithm​
- Initialize a 2D DP array
dpof size(len(s1) + 1) x (len(s2) + 1). dp[0][0]isTruebecause an emptys3can be formed by interleaving two empty strings.- Fill the first row and column of
dp:dp[i][0]isTrueifs1[:i]matchess3[:i].dp[0][j]isTrueifs2[:j]matchess3[:j].
- Fill the rest of the
dparray:dp[i][j]isTrueif either of the following isTrue:dp[i-1][j]isTrueands1[i-1] == s3[i+j-1]dp[i][j-1]isTrueands2[j-1] == s3[i+j-1]
- The result is
dp[len(s1)][len(s2)].
Solution in Python​
class Solution:
def isInterleave(self, s1: str, s2: str, s3: str) -> bool:
if len(s1) + len(s2) != len(s3):
return False
dp = [[False] * (len(s2) + 1) for _ in range(len(s1) + 1)]
dp[0][0] = True
for i in range(1, len(s1) + 1):
dp[i][0] = dp[i-1][0] and s1[i-1] == s3[i-1]
for j in range(1, len(s2) + 1):
dp[0][j] = dp[0][j-1] and s2[j-1] == s3[j-1]
for i in range(1, len(s1) + 1):
for j in range(1, len(s2) + 1):
dp[i][j] = (dp[i-1][j] and s1[i-1] == s3[i+j-1]) or (dp[i][j-1] and s2[j-1] == s3[i+j-1])
return dp[len(s1)][len(s2)]
Solution in Java​
class Solution {
public boolean isInterleave(String s1, String s2, String s3) {
if (s1.length() + s2.length() != s3.length()) {
return false;
}
boolean[][] dp = new boolean[s1.length() + 1][s2.length() + 1];
dp[0][0] = true;
for (int i = 1; i <= s1.length(); i++) {
dp[i][0] = dp[i-1][0] && s1.charAt(i-1) == s3.charAt(i-1);
}
for (int j = 1; j <= s2.length(); j++) {
dp[0][j] = dp[0][j-1] && s2.charAt(j-1) == s3.charAt(j-1);
}
for (int i = 1; i <= s1.length(); i++) {
for (int j = 1; j <= s2.length(); j++) {
dp[i][j] = (dp[i-1][j] && s1.charAt(i-1) == s3.charAt(i+j-1)) || (dp[i][j-1] && s2.charAt(j-1) == s3.charAt(i+j-1));
}
}
return dp[s1.length()][s2.length()];
}
}
Solution in C++​
class Solution {
public:
bool isInterleave(string s1, string s2, string s3) {
if (s1.length() + s2.length() != s3.length()) {
return false;
}
vector<vector<bool>> dp(s1.length() + 1, vector<bool>(s2.length() + 1, false));
dp[0][0] = true;
for (int i = 1; i <= s1.length(); i++) {
dp[i][0] = dp[i-1][0] && s1[i-1] == s3[i-1];
}
for (int j = 1; j <= s2.length(); j++) {
dp[0][j] = dp[0][j-1] && s2[j-1] == s3[j-1];
}
for (int i = 1; i <= s1.length(); i++) {
for (int j = 1; j <= s2.length(); j++) {
dp[i][j] = (dp[i-1][j] && s1[i-1] == s3[i+j-1]) || (dp[i][j-1] && s2[j-1] == s3[i+j-1]);
}
}
return dp[s1.length()][s2.length()];
}
};
Solution in C​
#include <stdbool.h>
#include <string.h>
bool isInterleave(char* s1, char* s2, char* s3) {
int len1 = strlen(s1), len2 = strlen(s2), len3 = strlen(s3);
if (len1 + len2 != len3) {
return false;
}
bool dp[len1 + 1][len2 + 1];
memset(dp, false, sizeof(dp));
dp[0][0] = true;
for (int i = 1; i <= len1; i++) {
dp[i][0] = dp[i-1][0] && s1[i-1] == s3[i-1];
}
for (int j = 1; j <= len2; j++) {
dp[0][j] = dp[0][j-1] && s2[j-1] == s3[j-1];
}
for (int i = 1; i <= len1; i++) {
for (int j = 1; j <= len2; j++) {
dp[i][j] = (dp[i-1][j] && s1[i-1] == s3[i+j-1]) || (dp[i][j-1] && s2[j-1] == s3[i+j-1]);
}
}
return dp[len1][len2];
}
Solution in JavaScript​
var isInterleave = function(s1, s2, s3) {
if (s1.length + s2.length !== s3.length) {
return false;
}
const dp = Array(s1.length + 1).fill(false).map(() => Array(s2.length + 1).fill(false));
dp[0][0] = true;
for (let i = 1; i <= s1.length; i++) {
dp[i][0] = dp[i-1][0] && s1[i-1] === s3[i-1];
}
for (let j = 1; j <= s2.length; j++) {
dp[0][j] = dp[0][j-1] && s2[j-1] === s3[j-1];
}
for (let i = 1; i <= s1.length; i++) {
for (let j = 1; j <= s2.length; j++) {
dp[i][j] = (dp[i-1][j] && s1[i-1] === s3[i+j-1]) || (dp[i][j-1] && s2[j-1] === s3[i+j-1]);
}
}
return dp[s1.length][s2.length];
};
Conclusion​
By utilizing dynamic programming, we can efficiently determine whether a given string s3 is an interleaving of two other strings s1 and s2. This approach ensures that we consider all possible ways to form s3 from s1 and s2 while adhering to the interleaving constraints.