Search in Rotated Sorted Array (LeetCode)
Problem Description​
Problem Statement | Solution Link | LeetCode Profile |
---|---|---|
Merge Two Sorted Lists | Merge Two Sorted Lists Solution on LeetCode | VijayShankerSharma |
Problem Description​
There is an integer array nums sorted in ascending order (with distinct values).
Prior to being passed to your function, nums is possibly rotated at an unknown pivot index k (0 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] (0-indexed)
.
Given the array nums after the possible rotation and an integer target, return the index of target if it is in nums, or -1 if it is not in nums.
You must write an algorithm with runtime complexity.
Examples​
Example 1​
- Input: nums = [4,5,6,7,0,1,2], target = 0
- Output: 4
- Explanation: 0 is located at index 4 in the rotated sorted array [4,5,6,7,0,1,2].
Example 2​
- Input: nums = [4,5,6,7,0,1,2], target = 3
- Output: -1
- Explanation: 3 is not in nums, so return -1.
Example 3​
- Input: nums = [1], target = 0
- Output: -1
- Explanation: 0 is not in nums, so return -1.
Constraints​
- All values of are unique.
- nums is an ascending array that is possibly rotated.
Approach​
To search for a target element in a rotated sorted array with distinct values with runtime complexity, we can use the binary search algorithm.
-
Find the Pivot Point:
- Perform binary search to find the pivot element, which is the smallest element in the array. This element divides the array into two sorted subarrays.
-
Perform Binary Search:
- Based on the pivot element, determine which half of the array the target might be in.
- Perform binary search in the appropriate half to find the target element.
Solution Code​
Python​
class Solution:
def search(self, nums: List[int], target: int) -> int:
left, right = 0, len(nums) - 1
while left <= right:
mid = (left + right) // 2
if nums[mid] == target:
return mid
elif nums[left] <= nums[mid]:
if nums[left] <= target < nums[mid]:
right = mid - 1
else:
left = mid + 1
else:
if nums[mid] < target <= nums[right]:
left = mid + 1
else:
right = mid - 1
return -1
Java​
class Solution {
public int search(int[] nums, int target) {
int left = 0, right = nums.length - 1;
while (left <= right) {
int mid = (left + right) / 2;
if (nums[mid] == target)
return mid;
else if (nums[left] <= nums[mid]) {
if (nums[left] <= target && target < nums[mid])
right = mid - 1;
else
left = mid + 1;
} else {
if (nums[mid] < target && target <= nums[right])
left = mid + 1;
else
right = mid - 1;
}
}
return -1;
}
}
C++​
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0, right = nums.size() - 1;
while (left <= right) {
int mid = (left + right) / 2;
if (nums[mid] == target)
return mid;
else if (nums[left] <= nums[mid]) {
if (nums[left] <= target && target < nums[mid])
right = mid - 1;
else
left = mid + 1;
} else {
if (nums[mid] < target && target <= nums[right])
left = mid + 1;
else
right = mid - 1;
}
}
return -1;
}
};
Conclusion​
The above solution effectively searches for a target element in a rotated sorted array with distinct values using the binary search algorithm with runtime complexity. It handles all edge cases and constraints specified in the problem statement.