Skip to main content

Score After Flipping Matrix

Problem Statement​

You are given an m x n binary matrix grid.

A move consists of choosing any row or column and toggling each value in that row or column (i.e., changing all 0's to 1's, and all 1's to 0's).

Every row of the matrix is interpreted as a binary number, and the score of the matrix is the sum of these numbers.

Return the highest possible score after making any number of moves (including zero moves).

Example 1:

Input: grid = [[0,0,1,1],[1,0,1,0],[1,1,0,0]]

Output: 39

Explanation: 0b1111 + 0b1001 + 0b1111 = 15 + 9 + 15 = 39

Example 2:

Input: grid = [[0]]

Output: 1

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 20
  • grid[i][j] is 0 or 1.

Solutions​

Approach​

To maximize the score, follow these steps:

  1. Row Flipping:

    • Ensure that each row starts with a 1 by flipping rows where the first element is 0.
  2. Column Flipping:

    • For each column, if the number of 0s exceeds the number of 1s, flip the column to maximize the number of 1s in that column.
  3. Calculate Score:

    • Convert each row from binary to decimal and sum these values to get the final score.

Java​

class Solution {
public int matrixScore(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
int i = 0, j = 0;

for (i = 0; i < m; i++) {
if (grid[i][0] == 0) {
flipRow(grid, i);
}
}

for (j = 0; j < n; j++) {
if (searchColZeroes(grid, j) > searchColOnes(grid, j)) {
flipCol(grid, j);
}
}

int sum = 0;
for (i = 0; i < grid.length; i++) {
int count = 0;
int temp = grid[0].length - 1;
for (j = 0; j < grid[0].length; j++) {
count += (int) (grid[i][j] * Math.pow(2, temp--));
}
sum += count;
}
return sum;
}

public int searchColZeroes(int[][] grid, int j) {
int count = 0;
for (int temp = 0; temp < grid.length; temp++) {
if (grid[temp][j] == 0) {
count++;
}
}
return count;
}

public int searchColOnes(int[][] grid, int j) {
int count = 0;
for (int temp = 0; temp < grid.length; temp++) {
if (grid[temp][j] == 1) {
count++;
}
}
return count;
}

public void flipCol(int[][] grid, int j) {
for (int temp = 0; temp < grid.length; temp++) {
grid[temp][j] = (grid[temp][j] == 0) ? 1 : 0;
}
}

public void flipRow(int[][] grid, int i) {
for (int temp = 0; temp < grid[0].length; temp++) {
grid[i][temp] = (grid[i][temp] == 0) ? 1 : 0;
}
}
}

Python​

class Solution:
def matrixScore(self, grid: List[List[int]]) -> int:
m = len(grid)
n = len(grid[0])

# Step 1: Ensure all rows start with '1' by flipping rows where grid[i][0] == 0
for i in range(m):
if grid[i][0] == 0:
self.flipRow(grid, i)

# Step 2: Ensure each column has more '1's than '0's by flipping columns if necessary
for j in range(n):
if self.searchColZeroes(grid, j) > self.searchColOnes(grid, j):
self.flipCol(grid, j)

# Step 3: Calculate the matrix score
score = 0
for i in range(m):
row_sum = 0
for j in range(n):
row_sum += grid[i][j] * (1 << (n - 1 - j)) # Equivalent to grid[i][j] * 2^(n-1-j)
score += row_sum

return score

def searchColZeroes(self, grid: List[List[int]], j: int) -> int:
count = 0
for i in range(len(grid)):
if grid[i][j] == 0:
count += 1
return count

def searchColOnes(self, grid: List[List[int]], j: int) -> int:
count = 0
for i in range(len(grid)):
if grid[i][j] == 1:
count += 1
return count

def flipCol(self, grid: List[List[int]], j: int) -> None:
for i in range(len(grid)):
grid[i][j] = 1 - grid[i][j]

def flipRow(self, grid: List[List[int]], i: int) -> None:
for j in range(len(grid[0])):
grid[i][j] = 1 - grid[i][j]