Skip to main content

Consecutive Numbers Sum

Problem Description​

Given an integer n, return the number of ways you can write n as the sum of consecutive positive integers.

Examples​

Example 1:

Input: n = 5
Output: 2
**Explanation**: 5 = 2 + 3

Example 2:

Input: n = 9
Output: 3
**Explanation:** 9 = 4 + 5 = 2 + 3 + 4

Example 3:

Input:   n = 15
Output: 4
**Explanation:** 15 = 8 + 7 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5

Constraints​

  • 1 <= n <= 10^9

Solution for Assign Cookies​

Approach:​

1- Discard all factors 2 from N.

2- Check all odd number i if N is divided by i.

3- Calculate the count of factors i that N has.

4- Update res *= count.

5- If N==1, we have found all primes and just return res.

6- Otherwise, N will be equal to P and we should do res *= count + 1 where count = 1.

Code in Different Languages​

C++​

class Solution {
public:
int consecutiveNumbersSum(int N) {
int res = 1, count;
while (N % 2 == 0) N /= 2;
for (int i = 3; i * i <= N; res *= count + 1, i += 2)
for (count = 0; N % i == 0; N /= i, count++);
return N == 1 ? res : res * 2;
}
};

Java​

class Solution {
public int consecutiveNumbersSum(int N) {
int res = 1, count;
while (N % 2 == 0) N /= 2;
for (int i = 3; i * i <= N; i += 2) {
count = 0;
while (N % i == 0) {
N /= i;
count++;
}
res *= count + 1;
}
return N == 1 ? res : res * 2;
}
}


Python​

class Solution(object):
def consecutiveNumbersSum(self, N):
res = 1
i = 3
while N % 2 == 0:
N /= 2
while i * i <= N:
count = 0
while N % i == 0:
N /= i
count += 1
res *= count + 1
i += 2
return res if N == 1 else res * 2

Complexity Analysis​

Time Complexity: O(logN)​

Space Complexity: O(1)​

References​