Apply Operations to an Array
Problem Statement​
Problem Description​
You are given a 0-indexed array nums of size n consisting of non-negative integers.
You need to apply n - 1 operations to this array where, in the ith operation (0-indexed), you will apply the following on the ith element of nums:
If nums[i] == nums[i + 1], then multiply nums[i] by 2 and set nums[i + 1] to 0. Otherwise, you skip this operation. After performing all the operations, shift all the 0's to the end of the array.
For example, the array [1,0,2,0,0,1] after shifting all its 0's to the end, is [1,2,1,0,0,0]. Return the resulting array.
Note that the operations are applied sequentially, not all at once.
Examples​
Example 1​
Input: nums = [1,2,2,1,1,0]
Output: [1,4,2,0,0,0]
Explanation: We do the following operations:
- i = 0: nums[0] and nums[1] are not equal, so we skip this operation.
- i = 1: nums[1] and nums[2] are equal, we multiply nums[1] by 2 and change nums[2] to 0. The array becomes [1,4,0,1,1,0].
- i = 2: nums[2] and nums[3] are not equal, so we skip this operation.
- i = 3: nums[3] and nums[4] are equal, we multiply nums[3] by 2 and change nums[4] to 0. The array becomes [1,4,0,2,0,0].
- i = 4: nums[4] and nums[5] are equal, we multiply nums[4] by 2 and change nums[5] to 0. The array becomes [1,4,0,2,0,0].
After that, we shift the 0's to the end, which gives the array [1,4,2,0,0,0].
Example 2​
Input: nums = [0,1]
Output: [1,0]
Explanation: No operation can be applied, we just shift the 0 to the end.
Constraints​
2 <= nums.length <= 2000
0 <= nums[i] <= 1000
Solution of Given Problem​
Intuition and Approach​
The problem can be solved using a brute force approach or an optimized Technique.
- Brute Force
- Optimized approach
Approach 1:Brute Force (Naive)​
Brute Force Approach: Iterate through the array and for each i, check if nums[i] is equal to nums[i + 1]. If they are equal, multiply nums[i] by 2 and set nums[i + 1] to 0. After all operations are performed, create a new array by collecting all non-zero elements followed by all zero elements.
Codes in Different Languages​
- C++
- Java
- Python
#include <iostream>
#include <vector>
std::vector<int> applyOperations(std::vector<int>& nums) {
int n = nums.size();
for (int i = 0; i < n - 1; ++i) {
if (nums[i] == nums[i + 1]) {
nums[i] *= 2;
nums[i + 1] = 0;
}
}
std::vector<int> result;
for (int num : nums) {
if (num != 0) {
result.push_back(num);
}
}
while (result.size() < n) {
result.push_back(0);
}
return result;
}
int main() {
std::vector<int> nums = {1, 2, 2, 1, 1, 0};
std::vector<int> result = applyOperations(nums);
for (int num : result) {
std::cout << num << " ";
}
std::cout << std::endl; // Output: 1 4 2 0 0 0
return 0;
}
import java.util.*;
public class ApplyOperations {
public static int[] applyOperations(int[] nums) {
int n = nums.length;
for (int i = 0; i < n - 1; i++) {
if (nums[i] == nums[i + 1]) {
nums[i] *= 2;
nums[i + 1] = 0;
}
}
int[] result = new int[n];
int idx = 0;
for (int num : nums) {
if (num != 0) {
result[idx++] = num;
}
}
return result;
}
public static void main(String[] args) {
int[] nums = {1, 2, 2, 1, 1, 0};
int[] result = applyOperations(nums);
System.out.println(Arrays.toString(result)); // Output: [1, 4, 2, 0, 0, 0]
}
}
def apply_operations(nums):
n = len(nums)
for i in range(n - 1):
if nums[i] == nums[i + 1]:
nums[i] *= 2
nums[i + 1] = 0
result = [num for num in nums if num != 0]
result.extend([0] * (n - len(result)))
return result
nums = [1, 2, 2, 1, 1, 0]
print(apply_operations(nums)) # Output: [1, 4, 2, 0, 0, 0]
Complexity Analysis​
- Time Complexity:
- for the operations and for shifting zeros.
- Space Complexity:
- for the additional array.
Approach 2: Optimized approach​
Optimized Approach: Iterate through the array and perform the operations in place. After performing all operations, use two pointers to move all non-zero elements to the front and fill the remaining elements with zeros.
Code in Different Languages​
- C++
- Java
- Python
#include <iostream>
#include <vector>
std::vector<int> applyOperations(std::vector<int>& nums) {
int n = nums.size();
for (int i = 0; i < n - 1; ++i) {
if (nums[i] == nums[i + 1]) {
nums[i] *= 2;
nums[i + 1] = 0;
}
}
int index = 0;
for (int i = 0; i < n; ++i) {
if (nums[i] != 0) {
nums[index++] = nums[i];
}
}
while (index < n) {
nums[index++] = 0;
}
return nums;
}
int main() {
std::vector<int> nums = {1, 2, 2, 1, 1, 0};
std::vector<int> result = applyOperations(nums);
for (int num : result) {
std::cout << num << " ";
}
std::cout << std::endl; // Output: 1 4 2 0 0 0
return 0;
}
import java.util.*;
public class ApplyOperations {
public static int[] applyOperations(int[] nums) {
int n = nums.length;
for (int i = 0; i < n - 1; i++) {
if (nums[i] == nums[i + 1]) {
nums[i] *= 2;
nums[i + 1] = 0;
}
}
int index = 0;
for (int i = 0; i < n; i++) {
if (nums[i] != 0) {
nums[index++] = nums[i];
}
}
while (index < n) {
nums[index++] = 0;
}
return nums;
}
public static void main(String[] args) {
int[] nums = {1, 2, 2, 1, 1, 0};
int[] result = applyOperations(nums);
System.out.println(Arrays.toString(result)); // Output: [1, 4, 2, 0, 0, 0]
}
}
def apply_operations(nums):
n = len(nums)
for i in range(n - 1):
if nums[i] == nums[i + 1]:
nums[i] *= 2
nums[i + 1] = 0
index = 0
for i in range(n):
if nums[i] != 0:
nums[index] = nums[i]
index += 1
while index < n:
nums[index] = 0
index += 1
return nums
nums = [1, 2, 2, 1, 1, 0]
print(apply_operations(nums)) # Output: [1, 4, 2, 0, 0, 0]
Complexity Analysis​
- Time Complexity:
- for both operations and shifting.
- Space Complexity:
- as no extra space is required.