Lexicographical-Numbers
Problem Description​
Given an integer n
, return all the numbers in the range [1, n]
sorted in lexicographical order.
You must write an algorithm that runs in time and uses extra space.
Example 1:
Input: n = 13
Output: [1,10,11,12,13,2,3,4,5,6,7,8,9]
Example 2:
Input: n = 2
Output: [1,2]
Constraints:​
1 <= n <= 5 * 10^4
Algorithm​
The basic idea is to find the next number to add.
Take 45 for example: if the current number is 45, the next one will be 450 (450 == 45 * 10)(if 450 <= n)
, or 46 (46 == 45 + 1) (if 46 <= n)
or 5 (5 == 45 / 10 + 1)
(5 is less than 45 so it is for sure less than n).
We should also consider n = 600
, and the current number = 499, the next number is 5
because there are all "9"s after "4" in "499"
so we should divide 499 by 10
until the last digit is not "9"
.
It is like a tree, and we are easy to get a sibling, a left most child and the parent of any node.
Code Implementation​
Python:
def lexicalOrder(self, n):
top = 1
while top * 10 <= n:
top *= 10
def mycmp(a, b, top=top):
while a < top: a *= 10
while b < top: b *= 10
return -1 if a < b else b < a
return sorted(xrange(1, n+1), mycmp)
C++:
class Solution {
public:
vector<int> lexicalOrder(int n) {
vector<int> res(n);
int cur = 1;
for (int i = 0; i < n; i++) {
res[i] = cur;
if (cur * 10 <= n) {
cur *= 10;
} else {
if (cur >= n)
cur /= 10;
cur += 1;
while (cur % 10 == 0)
cur /= 10;
}
}
return res;
}
};
Java:
public List<Integer> lexicalOrder(int n) {
List<Integer> list = new ArrayList<>(n);
int curr = 1;
for (int i = 1; i <= n; i++) {
list.add(curr);
if (curr * 10 <= n) {
curr *= 10;
} else if (curr % 10 != 9 && curr + 1 <= n) {
curr++;
} else {
while ((curr / 10) % 10 == 9) {
curr /= 10;
}
curr = curr / 10 + 1;
}
}
return list;
}