Find K Pairs with Smallest Sums
Problem Description​
You are given two integer arrays nums1
and nums2
sorted in non-decreasing order and an integer k
.
Define a pair (u, v)
which consists of one element from the first array and one element from the second array.
Return the k
pairs (u1, v1)
, (u2, v2)
, ..., (uk, vk)
with the smallest sums.
Examples​
Example 1:​
Input: nums1 = [1, 7, 11], nums2 = [2, 4, 6], k = 3
Output: [[1, 2], [1, 4], [1, 6]]
Explanation: The first 3 pairs are returned from the sequence: [1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]
Example 2:​
Input: nums1 = [1, 1, 2], nums2 = [1, 2, 3], k = 2
Output: [[1, 1], [1, 1]]
Explanation: The first 2 pairs are returned from the sequence: [1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]
Constraints:​
Certainly! Here is the algorithm for finding the k smallest pairs with the smallest sums:
Algorithm​
-
Initialize a Max-Heap:
- Use a max-heap (priority queue) to keep track of the k smallest pairs by their sums. The max-heap will allow us to efficiently manage the top k smallest pairs.
-
Iterate Through Pairs:
- Use two nested loops to iterate through all possible pairs formed by taking one element from
nums1
and one fromnums2
. - For each pair
(nums1[i], nums2[j])
:- Calculate the sum of the pair:
sum = nums1[i] + nums2[j]
.
- Calculate the sum of the pair:
- Use two nested loops to iterate through all possible pairs formed by taking one element from
-
Heap Management:
- If the heap has fewer than k elements, push the current pair and its sum into the heap.
- If the heap already contains k elements:
- Compare the current pair's sum with the maximum sum in the heap (the top element).
- If the current pair's sum is smaller, pop the top element from the heap and push the current pair into the heap.
- If the current pair's sum is greater than or equal to the maximum sum in the heap, break the inner loop to avoid unnecessary comparisons. This optimization works because
nums2
is sorted; once a pair's sum exceeds the largest in the heap, subsequent pairs in the inner loop will only get larger.
-
Extract Results:
- After processing all pairs, extract all pairs from the heap. These pairs will be in descending order of their sums because of the max-heap.
- Reverse the result list to get the pairs in ascending order of their sums.
C++ Solution​
#include <vector>
#include <queue>
#include <utility>
using namespace std;
class Solution {
public:
vector<vector<int>> kSmallestPairs(vector<int>& nums1, vector<int>& nums2, int k) {
vector<vector<int>> ans;
priority_queue<pair<int, pair<int, int>>> pq;
for (int i = 0; i < nums1.size(); i++) {
for (int j = 0; j < nums2.size(); j++) {
int sum = nums1[i] + nums2[j];
if (pq.size() < k) {
pq.push({sum, {nums1[i], nums2[j]}});
} else if (sum < pq.top().first) {
pq.pop();
pq.push({sum, {nums1[i], nums2[j]}});
} else {
break;
}
}
}
while (!pq.empty()) {
ans.push_back({pq.top().second.first, pq.top().second.second});
pq.pop();
}
reverse(ans.begin(), ans.end()); // Reverse to get the pairs in ascending order.
return ans;
}
};
Python Solution​
import heapq
class Solution:
def kSmallestPairs(self, nums1, nums2, k):
pq = []
for i in range(len(nums1)):
for j in range(len(nums2)):
sum = nums1[i] + nums2[j]
if len(pq) < k:
heapq.heappush(pq, (-sum, nums1[i], nums2[j]))
else:
if sum < -pq[0][0]:
heapq.heappop(pq)
heapq.heappush(pq, (-sum, nums1[i], nums2[j]))
else:
break
ans = []
while pq:
sum, num1, num2 = heapq.heappop(pq)
ans.append([num1, num2])
ans.reverse() # Reverse to get the pairs in ascending order
return ans
Java Solution​
import java.util.*;
public class Solution {
public List<List<Integer>> kSmallestPairs(int[] nums1, int[] nums2, int k) {
PriorityQueue<int[]> pq = new PriorityQueue<>((a, b) -> b[0] - a[0]);
for (int i = 0; i < nums1.length; i++) {
for (int j = 0; j < nums2.length; j++) {
int sum = nums1[i] + nums2[j];
if (pq.size() < k) {
pq.offer(new int[]{sum, nums1[i], nums2[j]});
} else if (sum < pq.peek()[0]) {
pq.poll();
pq.offer(new int[]{sum, nums1[i], nums2[j]});
} else {
break;
}
}
}
List<List<Integer>> ans = new ArrayList<>();
while (!pq.isEmpty()) {
int[] pair = pq.poll();
ans.add(Arrays.asList(pair[1], pair[2]));
}
Collections.reverse(ans); // Reverse to get the pairs in ascending order
return ans;
}
}
JavaScript Solution​
class Solution {
kSmallestPairs(nums1, nums2, k) {
let pq = new MaxPriorityQueue({ priority: (x) => x[0] });
for (let i = 0; i < nums1.length; i++) {
for (let j = 0; j < nums2.length; j++) {
let sum = nums1[i] + nums2[j];
if (pq.size() < k) {
pq.enqueue([sum, nums1[i], nums2[j]]);
} else if (sum < pq.front().element[0]) {
pq.dequeue();
pq.enqueue([sum, nums1[i], nums2[j]]);
} else {
break;
}
}
}
let ans = [];
while (!pq.isEmpty()) {
let [sum, num1, num2] = pq.dequeue().element;
ans.push([num1, num2]);
}
ans.reverse(); // Reverse to get the pairs in ascending order
return ans;
}
}