Skip to main content

Minimum Sum of Mountain Triplets II

Problem Description​

You are given a 0-indexed array nums of integers.

A triplet of indices (i, j, k) is a mountain if:

  1. i < j < k
  2. nums[i] < nums[j] and nums[k] < nums[j]

Return the minimum possible sum of a mountain triplet of nums. If no such triplet exists, return -1.

Examples​

Example 1:

Input: nums = [8,6,1,5,3]
Output: 9

Explanation: Triplet (2, 3, 4) is a mountain triplet of sum 9 since:

2 < 3 < 4
nums[2] < nums[3] and nums[4] < nums[3]
And the sum of this triplet is nums[2] + nums[3] + nums[4] = 9. It can be shown that there are no mountain triplets with a sum of less than 9.

Example 2:

Input: nums = [5,4,8,7,10,2]
Output: 13

Explanation: Triplet (1, 3, 5) is a mountain triplet of sum 13 since:

1 < 3 < 5
nums[1] < nums[3] and nums[5] < nums[3]
And the sum of this triplet is nums[1] + nums[3] + nums[5] = 13. It can be shown that there are no mountain triplets with a sum of less than 13.

Example 3:

Input: nums = [6,5,4,3,4,5]
Output: -1

Explanation: It can be shown that there are no mountain triplets in nums.

Constraints​

  • 3 <= nums.length <= 10^5
  • 1 <= nums[i] <= 10^8

Approach​

To solve this problem, we can use a dynamic programming approach. We will maintain two arrays, left and right, where left[i] contains the minimum value of nums[l] for l < i such that nums[l] < nums[i], and right[i] contains the minimum value of nums[r] for r > i such that nums[r] < nums[i].

We will iterate through the array nums and calculate the possible minimum sum for each valid triplet (i, j, k), updating the minimum sum as we go.

Complexity​

  • Time complexity: O(n)O(n), where n is the length of the nums array. This is because we are iterating through the array a constant number of times.
  • Space complexity: O(n)O(n), for storing the left and right arrays.

C++​

class Solution {
public:
int minimumSumOfMountainTriplets(vector<int>& nums) {
int n = nums.size();
if (n < 3) return -1;

vector<int> leftMin(n, INT_MAX);
vector<int> rightMin(n, INT_MAX);

// Calculate leftMin array
int minLeft = INT_MAX;
for (int i = 1; i < n; ++i) {
if (nums[i - 1] < nums[i]) {
minLeft = min(minLeft, nums[i - 1]);
}
leftMin[i] = minLeft;
}

// Calculate rightMin array
int minRight = INT_MAX;
for (int i = n - 2; i >= 0; --i) {
if (nums[i + 1] < nums[i]) {
minRight = min(minRight, nums[i + 1]);
}
rightMin[i] = minRight;
}

int minSum = INT_MAX;

// Find the minimum sum of a valid mountain triplet
for (int j = 1; j < n - 1; ++j) {
if (leftMin[j] != INT_MAX && rightMin[j] != INT_MAX && nums[j] > leftMin[j] && nums[j] > rightMin[j]) {
minSum = min(minSum, leftMin[j] + nums[j] + rightMin[j]);
}
}

return minSum == INT_MAX ? -1 : minSum;
}
};

Java​

class Solution {
public int minimumSumOfMountainTriplets(int[] nums) {
int n = nums.length;
if (n < 3) return -1;

int[] leftMin = new int[n];
int[] rightMin = new int[n];
Arrays.fill(leftMin, Integer.MAX_VALUE);
Arrays.fill(rightMin, Integer.MAX_VALUE);

// Calculate leftMin array
int minLeft = Integer.MAX_VALUE;
for (int i = 1; i < n; i++) {
if (nums[i - 1] < nums[i]) {
minLeft = Math.min(minLeft, nums[i - 1]);
}
leftMin[i] = minLeft;
}

// Calculate rightMin array
int minRight = Integer.MAX_VALUE;
for (int i = n - 2; i >= 0; i--) {
if (nums[i + 1] < nums[i]) {
minRight = Math.min(minRight, nums[i + 1]);
}
rightMin[i] = minRight;
}

int minSum = Integer.MAX_VALUE;

// Find the minimum sum of a valid mountain triplet
for (int j = 1; j < n - 1; j++) {
if (leftMin[j] != Integer.MAX_VALUE && rightMin[j] != Integer.MAX_VALUE && nums[j] > leftMin[j] && nums[j] > rightMin[j]) {
minSum = Math.min(minSum, leftMin[j] + nums[j] + rightMin[j]);
}
}

return minSum == Integer.MAX_VALUE ? -1 : minSum;
}
}