Skip to main content

Drop Duplicate Rows

Problem Description​

There are some duplicate rows in the DataFrame based on the email column. Write a solution to remove these duplicate rows and keep only the first occurrence. The result format is in the following example.

Examples​

Example 1:

Input:

+-------------+---------+---------------------+
| customer_id | name | email |
+-------------+---------+---------------------+
| 1 | Ella | emily@example.com |
| 2 | David | michael@example.com |
| 3 | Zachary | sarah@example.com |
| 4 | Alice | john@example.com |
| 5 | Finn | john@example.com |
| 6 | Violet | alice@example.com |
+-------------+---------+---------------------+

Output:

+-------------+---------+---------------------+
| customer_id | name | email |
+-------------+---------+---------------------+
| 1 | Ella | emily@example.com |
| 2 | David | michael@example.com |
| 3 | Zachary | sarah@example.com |
| 4 | Alice | john@example.com |
| 6 | Violet | alice@example.com |
+-------------+---------+---------------------+

Explanation:​

Alic (customer_id = 4) and Finn (customer_id = 5) both use john@example.com, so only the first occurrence of this email is retained.

Intuition​

I will use the pandas library to solve this problem. I will use the drop_duplicates method to remove the duplicate rows based on the email column and keep only the first occurrence.

Solution Code​

Written by @abhay
import pandas as pd

def dropDuplicateEmails(customers: pd.DataFrame) -> pd.DataFrame:
customers.drop_duplicates(subset='email',keep='first',inplace = True)
return customers

References​