Count Equal and Divisible Pairs in an Array
Problem Description​
Given a 0-indexed integer array nums
of length n and an integer k
, return the number of pairs (i, j)
where 0 <= i < j < n
, such that nums[i] == nums[j]
and (i * j)
is divisible by k
.
Example​
Example 1:
Input: nums = [3,1,2,2,2,1,3], k = 2
Output: 4
Explanation:
There are 4 pairs that meet all the requirements:
- nums[0] == nums[6], and 0 * 6 == 0, which is divisible by 2.
- nums[2] == nums[3], and 2 * 3 == 6, which is divisible by 2.
- nums[2] == nums[4], and 2 * 4 == 8, which is divisible by 2.
- nums[3] == nums[4], and 3 * 4 == 12, which is divisible by 2.
Example 2:
Input: nums = [1,2,3,4], k = 1
Output: 0
Explanation: Since no value in nums is repeated, there are no pairs (i,j) that meet all the requirements.
Constraints​
1 <= nums[i], k <= 100
Solution Approach​
Intuition:​
To efficiently Count Equal and Divisible Pairs in an Array
Solution Implementation​
Code In Different Languages:​
- JavaScript
- TypeScript
- Python
- Java
- C++
class Solution {
countPairs(nums, k) {
const n = nums.length;
let cnt = 0;
for(let i = 0; i < n - 1; i++){
for(let j = i + 1; j < n; j++){
if(nums[i] === nums[j]){
if((i * j) % k === 0) cnt++;
}
}
}
return cnt;
}
}
class Solution {
countPairs(nums: number[], k: number): number {
const n = nums.length;
let cnt = 0;
for(let i = 0; i < n - 1; i++){
for(let j = i + 1; j < n; j++){
if(nums[i] === nums[j]){
if((i * j) % k === 0) cnt++;
}
}
}
return cnt;
}
}
class Solution:
def countPairs(self, nums, k):
n = len(nums)
cnt = 0
for i in range(n - 1):
for j in range(i + 1, n):
if nums[i] == nums[j]:
if (i * j) % k == 0:
cnt += 1
return cnt
public class Solution {
public int countPairs(int[] nums, int k) {
int n = nums.length;
int cnt = 0;
for(int i = 0; i < n - 1; i++){
for(int j = i + 1; j < n; j++){
if(nums[i] == nums[j]){
if((i * j) % k == 0) cnt++;
}
}
}
return cnt;
}
}
Complexity Analysis​
- Time Complexity:
- Space Complexity:
- The time complexity is , where n is the length of the input array nums. This is because the algorithm uses nested loops to iterate over all pairs of elements in the array.
- The space complexity is because we are not using any extra space.