Skip to main content

Implement Stack using Queues

Problem​

Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should support all the functions of a normal stack (push, top, pop, and empty).

Implement the MyStack class:

  • void push(int x) Pushes element x to the top of the stack.
  • int pop() Removes the element on the top of the stack and returns it.
  • int top() Returns the element on the top of the stack.
  • boolean empty() Returns true if the stack is empty, false otherwise.
note
  • You must use only standard operations of a queue, which means that only push to back, peek/pop from front, size, and is empty operations are valid.
  • Depending on your language, the queue may not be supported natively. You may simulate a queue using a list or deque (double-ended queue) as long as you use only a queue's standard operations.

Examples​

Example 1:

Input

["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]

Output

[null, null, null, 2, 2, false]

Explanation

MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // return 2
myStack.pop(); // return 2
myStack.empty(); // return False

Constraints​

  • 1≤x≤91 \leq x \leq 9
  • At most 100 calls will be made to push, pop, top, and empty.
  • All the calls to pop and top are valid.

Solution​

Intuition​

For both approaches, the goal is to simulate a stack using queues.

Approach 1 (Using 2 queues)​

We maintain two queues, que1 and que2.

  • Push: When pushing a new element, we push it onto que2 and then move all elements from que1 to que2, effectively making the newly pushed element at the front of que2. Then, we swap the names of que1 and que2.
  • Pop, Top, and Empty: Operations are straightforward, as they directly operate on que1.

Approach 2 (Using 1 queue)​

We maintain a single queue, que.

  • Push: When pushing a new element, we first push it onto the queue. Then, we rotate the queue by pushing and popping elements until the newly pushed element becomes the front.
  • Pop, Top, and Empty: Operations are straightforward, as they directly operate on the single queue.

Complexity​

  • Time complexity:

    • Approach 1 (Using 2 queues):
      • Push: O(n)O(n) - Moving all elements from one queue to another.
      • Pop, Top, Empty: O(1)O(1)
    • Approach 2 (Using 1 queue):
      • Push: O(n)O(n) - Rotating the queue to bring the newly pushed element to the front.
      • Pop, Top, Empty: O(1)O(1)
  • Space complexity: Both approaches have a space complexity of O(n)O(n) to store the elements in the queue(s).

Code​

Using 2 queues​

class MyStack {
public:
queue<int> que1;
queue<int> que2;

MyStack() {}

void push(int x) {
que2.push(x);

while(!que1.empty()){
que2.push(que1.front());
que1.pop();
}

swap(que1, que2);
}

int pop() {
int result = que1.front();
que1.pop();

return result;
}

int top() {
return que1.front();
}

bool empty() {
return que1.empty();
}
};

Using 1 queue​

class MyStack {
public:
queue<int> que;

MyStack() {}

void push(int x) {
que.push(x);
int n = que.size();

for(int i=0; i<n-1; i++){
que.push(que.front());
que.pop();
}
}

int pop() {
int result = que.front();
que.pop();

return result;
}

int top() {
return que.front();
}

bool empty() {
return que.empty();
}
};

Using 2 queues​

class MyStack {
Queue<Integer> que1;
Queue<Integer> que2;

public MyStack() {
que1 = new LinkedList<>();
que2 = new LinkedList<>();
}

public void push(int x) {
que2.add(x);

while (!que1.isEmpty()) {
que2.add(que1.remove());
}

Queue<Integer> temp = que1;
que1 = que2;
que2 = temp;
}

public int pop() {
return que1.remove();
}

public int top() {
return que1.peek();
}

public boolean empty() {
return que1.isEmpty();
}
}

Using 1 queue​

class MyStack {
Queue<Integer> que;

public MyStack() {
que = new LinkedList<>();
}

public void push(int x) {
que.add(x);
int size = que.size();

for (int i = 0; i < size - 1; i++) {
que.add(que.remove());
}
}

public int pop() {
return que.remove();
}

public int top() {
return que.peek();
}

public boolean empty() {
return que.isEmpty();
}
}

Using 2 queues (Python)​

from queue import Queue

class MyStack:
def __init__(self):
self.que1 = Queue()
self.que2 = Queue()

def push(self, x: int) -> None:
self.que2.put(x)

while not self.que1.empty():
self.que2.put(self.que1.get())

self.que1, self.que2 = self.que2, self.que1

def pop(self) -> int:
return self.que1.get()

def top(self) -> int:
return self.que1.queue[0]

def empty(self) -> bool:
return self.que1.empty()

Using 1 queue (Python)​

from queue import Queue

class MyStack:
def __init__(self):
self.que = Queue()

def push(self, x: int) -> None:
self.que.put(x)
n = self.que.qsize()

for _ in range(n - 1):
self.que.put(self.que.get())

def pop(self) -> int:
return self.que.get()

def top(self) -> int:
return self.que.queue[0]

def empty(self) -> bool:
return self.que.empty()