Kruskal's Graph Algorithm
Kruskal's algorithm is a popular method used to find the minimum spanning tree (MST) of a connected, undirected graph. A minimum spanning tree is a subset of the edges in a graph that connects all the vertices together, wihout any cycles, and with minimum possible total edge weight.
Key Concepts:​
- Edge Selection: The algorithm picks the smallest weight edge first and uses a greedy approach to ensure the overall minimum weight for the spanning tree.
- Cycle Detection: To check efficiently if adding a new edge forms a cycle, the algorithm uses union-find (Disjoint set union) function for that.
To find MST using Kruskal's algorithm​
Following steps are used to find the MST:
- Sort the edges in ascending order of their weight.
- Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If the cycle is not formed, include this edge. Else, discard it.
- Repeat step 2 until there are (V-1) edges in the spanning tree.
Implementation:​
Program for the Kruskal's algorithm:
- C++
- Python
- Java
- JavaScript
//kruskals algorithm
#include<iostream>
#include<vector>
#define I INT32_MAX
using namespace std;
void Union(int u, int v,vector<int>&s)// here u and v are the head of two sets
{
// the one with more child will become the ultimate head
if (s[u]<s[v])//s is the array where sets are stored
{
s[u]=s[u]+s[v];
s[v]=u;
}
else
{
s[v]=s[u]+s[v];
s[u]=v;
}
}
// write a find function to find the parent of any node
int find(int u,vector<int>&s)// u is the element whose parent we need to find
{
int x=u;
int v=0;
while(s[x]>0)
{
x=s[x];
}
return x;
}
vector<vector<int>> kruskals_algo(vector<vector<int>>&G,int n,int a)
{
vector<int>set(a,-1);
vector<int>included(n,0);
vector<vector<int>>sol(2,vector<int>(a-1));
int i=0,j,k,min,u,v;
while(i<a-1)
{
min=I;
for (j=0;j<n;j++)
{
if (included[j]==0 && G[2][j]<min)
{
min=G[2][j];
k=j;
u=G[0][j];
v=G[1][j];
}
}
//cout<<"out"<<endl;
int x=find(u,set),y=find(v,set);
if (x!=y)
{
sol[0][i]=u;
sol[1][i]=v;
Union(x,y,set);
i++;
}
included[k]=1;
// cout<<"worked"<<endl;
}
//cout<<"worked"<<endl;
return sol;
}
int main()
{
int n,a;
cout<<"Enter the number of edges: ";
cin>>n;
cout<<"Enter the number of vertexes: ";
cin>>a;
vector<vector<int>>G(3,vector<int>(n));
for (int i=0;i<3;i++)
{
for (int j=0;j<n;j++)
cin>>G[i][j];
}
vector<vector<int>>res=kruskals_algo(G,n,a);
cout<<"Kruskals path is: "<<endl;
for (int i=0;i<2;i++)
{
for (int j=0;j<a-1;j++)
cout<<res[i][j]<<" ";
cout<<endl;
}
return 0;
}
import sys
def union(u, v, s):
if s[u] < s[v]:
s[u] += s[v]
s[v] = u
else:
s[v] += s[u]
s[u] = v
def find(u, s):
x = u
while s[x] > 0:
x = s[x]
return x
def kruskals_algo(G, n, a):
set = [-1] * a
included = [0] * n
sol = [[0] * (a - 1) for _ in range(2)]
i = 0
while i < a - 1:
min = sys.maxsize
for j in range(n):
if included[j] == 0 and G[2][j] < min:
min = G[2][j]
k = j
u = G[0][j]
v = G[1][j]
x = find(u, set)
y = find(v, set)
if x != y:
sol[0][i] = u
sol[1][i] = v
union(x, y, set)
i += 1
included[k] = 1
return sol
if __name__ == "__main__":
n = int(input("Enter the number of edges: "))
a = int(input("Enter the number of vertices: "))
G = [list(map(int, input().split())) for _ in range(3)]
res = kruskals_algo(G, n, a)
print("Kruskal's path is: ")
for i in range(2):
print(" ".join(map(str, res[i])))
import java.util.*;
public class KruskalsAlgorithm {
static void union(int u, int v, int[] s) {
if (s[u] < s[v]) {
s[u] += s[v];
s[v] = u;
} else {
s[v] += s[u];
s[u] = v;
}
}
static int find(int u, int[] s) {
int x = u;
while (s[x] > 0) {
x = s[x];
}
return x;
}
static int[][] kruskals_algo(int[][] G, int n, int a) {
int[] set = new int[a];
Arrays.fill(set, -1);
int[] included = new int[n];
int[][] sol = new int[2][a - 1];
int i = 0;
while (i < a - 1) {
int min = Integer.MAX_VALUE;
int u = 0, v = 0, k = 0;
for (int j = 0; j < n; j++) {
if (included[j] == 0 && G[2][j] < min) {
min = G[2][j];
k = j;
u = G[0][j];
v = G[1][j];
}
}
int x = find(u, set);
int y = find(v, set);
if (x != y) {
sol[0][i] = u;
sol[1][i] = v;
union(x, y, set);
i++;
}
included[k] = 1;
}
return sol;
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter the number of edges: ");
int n = scanner.nextInt();
System.out.print("Enter the number of vertices: ");
int a = scanner.nextInt();
int[][] G = new int[3][n];
for (int i = 0; i < 3; i++) {
for (int j = 0; j < n; j++) {
G[i][j] = scanner.nextInt();
}
}
int[][] res = kruskals_algo(G, n, a);
System.out.println("Kruskal's path is: ");
for (int i = 0; i < 2; i++) {
for (int j = 0; j < a - 1; j++) {
System.out.print(res[i][j] + " ");
}
System.out.println();
}
scanner.close();
}
}
function union(u, v, s) {
if (s[u] < s[v]) {
s[u] += s[v];
s[v] = u;
} else {
s[v] += s[u];
s[u] = v;
}
}
function find(u, s) {
let x = u;
while (s[x] > 0) {
x = s[x];
}
return x;
}
function kruskalsAlgo(G, n, a) {
let set = new Array(a).fill(-1);
let included = new Array(n).fill(0);
let sol = [new Array(a - 1), new Array(a - 1)];
let i = 0;
while (i < a - 1) {
let min = Number.MAX_SAFE_INTEGER;
let u, v, k;
for (let j = 0; j < n; j++) {
if (included[j] === 0 && G[2][j] < min) {
min = G[2][j];
k = j;
u = G[0][j];
v = G[1][j];
}
}
let x = find(u, set);
let y = find(v, set);
if (x !== y) {
sol[0][i] = u;
sol[1][i] = v;
union(x, y, set);
i++;
}
included[k] = 1;
}
return sol;
}
function main() {
const n = parseInt(prompt("Enter the number of edges: "));
const a = parseInt(prompt("Enter the number of vertices: "));
let G = [];
for (let i = 0; i < 3; i++) {
G.push(prompt(`Enter row ${i} of graph:`).split(' ').map(Number));
}
let res = kruskalsAlgo(G, n, a);
console.log("Kruskal's path is: ");
for (let i = 0; i < 2; i++) {
console.log(res[i].join(' '));
}
}
main();
Output:
/*input is in the format row one u, row two v and row three weight between u and v*/
Enter the number of edges: 8
Enter the number of vertexes: 7
0 0 0 1 1 3 6 4
1 3 6 2 4 4 4 5
2 3 4 3 2 5 6 7
Kruskals path is:
0 1 0 1 0 4
1 4 3 2 6 5
Time and Space Complexity:​
- Time complexity: The time complexity of kruskal's algorithm depends on two operations i.e. sorting of all edges and union-find operation.Thus, the overall time complexity is:
- Space complexity: The space complexity of kruskal's algorithm includes storage for edges, union-find data structure and storage for the MST. Thus the overall space complexity is: