Bucket sort
Introduction to Bucket Sortβ
Bucket sort is a comparison sorting algorithm that distributes elements into a number of "buckets." Each bucket is then sorted individually, either using another sorting algorithm or recursively applying the bucket sort. Finally, the sorted buckets are combined to form the final sorted array. Bucket sort is particularly useful for uniformly distributed data.
Steps of Bucket Sortβ
- Create Buckets: Initialize an empty array of buckets.
- Distribute Elements: Distribute the elements of the input array into the appropriate buckets.
- Sort Buckets: Sort each bucket individually.
- Concatenate Buckets: Concatenate all sorted buckets to form the final sorted array.
Pseudocodeβ
function bucketSort(array, bucketSize):
if length(array) == 0:
return array
// Determine minimum and maximum values
minValue = min(array)
maxValue = max(array)
// Initialize buckets
bucketCount = floor((maxValue - minValue) / bucketSize) + 1
buckets = array of empty lists of size bucketCount
// Distribute input array values into buckets
for i from 0 to length(array) - 1:
bucketIndex = floor((array[i] - minValue) / bucketSize)
append array[i] to buckets[bucketIndex]
// Sort each bucket and concatenate them
sortedArray = []
for i from 0 to bucketCount - 1:
sort(buckets[i]) // You can use any sorting algorithm
append buckets[i] to sortedArray
return sortedArray
Implementation in Python, C++, and Javaβ
Python Implementationβ
def bucket_sort(numbers, size=5):
if len(numbers) == 0:
return numbers
# Determine minimum and maximum values
min_value = min(numbers)
max_value = max(numbers)
# Initialize buckets
bucket_count = (max_value - min_value) // size + 1
buckets = [[] for _ in range(bucket_count)]
# Distribute input array values into buckets
for number in numbers:
bucket_index = (number - min_value) // size
buckets[bucket_index].append(number)
# Sort each bucket and concatenate them
sorted_numbers = []
for bucket in buckets:
sorted_numbers.extend(sorted(bucket))
return sorted_numbers
# Example usage
data = [42, 32, 33, 52, 37, 47, 51]
sorted_data = bucket_sort(data)
print(sorted_data) # Output: [32, 33, 37, 42, 47, 51, 52]
C++ Implementationβ
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
void bucketSort(vector<int>& nums, int bucketSize) {
if (nums.empty())
return;
// Determine minimum and maximum values
int minValue = *min_element(nums.begin(), nums.end());
int maxValue = *max_element(nums.begin(), nums.end());
// Initialize buckets
int numBuckets = (maxValue - minValue) / bucketSize + 1;
vector<vector<int>> buckets(numBuckets);
// Distribute input array values into buckets
for (int num : nums) {
int bucketIndex = (num - minValue) / bucketSize;
buckets[bucketIndex].push_back(num);
}
// Sort each bucket and concatenate them
nums.clear();
for (auto& bucket : buckets) {
sort(bucket.begin(), bucket.end());
nums.insert(nums.end(), bucket.begin(), bucket.end());
}
}
// Example usage
int main() {
vector<int> data = {42, 32, 33, 52, 37, 47, 51};
bucketSort(data, 5);
for (int num : data) {
cout << num << " ";
}
// Output: 32 33 37 42 47 51 52
return 0;
}
Java Implementationβ
import java.util.ArrayList;
import java.util.Collections;
public class BucketSort {
public static void bucketSort(int[] array, int bucketSize) {
if (array.length == 0)
return;
// Determine minimum and maximum values
int minValue = array[0];
int maxValue = array[0];
for (int num : array) {
if (num < minValue)
minValue = num;
else if (num > maxValue)
maxValue = num;
}
// Initialize buckets
int bucketCount = (maxValue - minValue) / bucketSize + 1;
ArrayList<ArrayList<Integer>> buckets = new ArrayList<>(bucketCount);
for (int i = 0; i < bucketCount; i++) {
buckets.add(new ArrayList<Integer>());
}
// Distribute input array values into buckets
for (int num : array) {
int bucketIndex = (num - minValue) / bucketSize;
buckets.get(bucketIndex).add(num);
}
// Sort each bucket and concatenate them
int currentIndex = 0;
for (ArrayList<Integer> bucket : buckets) {
Collections.sort(bucket);
for (int num : bucket) {
array[currentIndex++] = num;
}
}
}
// Example usage
public static void main(String[] args) {
int[] data = {42, 32, 33, 52, 37, 47, 51};
bucketSort(data, 5);
for (int num : data) {
System.out.print(num + " ");
}
// Output: 32 33 37 42 47 51 52
}
}
Complexityβ
-
Time Complexity:
- Best Case: , where is the number of elements and is the number of buckets.
- Average Case:
- Worst Case: , when all elements are placed in one bucket and a slow sorting algorithm (like bubble sort) is used within buckets.
-
Space Complexity: , for the input array and the buckets.
Conclusionβ
Bucket sort is efficient for sorting uniformly distributed data and can achieve linear time complexity in the best case. However, it may degrade to quadratic time complexity in the worst case if elements are not uniformly distributed. It's essential to choose an appropriate bucket size and secondary sorting algorithm for optimal performance. By understanding its structure and implementation, you can effectively use bucket sort for various sorting tasks.