Skip to main content

Kadaney's Algorithm

Kadane's Algorithm​

The idea of Kadane’s algorithm is to maintain a variable max_ending_here that stores the maximum sum contiguous subarray ending at current index and a variable max_so_far stores the maximum sum of contiguous subarray found so far, Everytime there is a positive-sum value in max_ending_here compare it with max_so_far and update max_so_far if it is greater than max_so_far.

So the main Intuition behind Kadane’s Algorithm is,

The subarray with negative sum is discarded (by assigning max_ending_here = 0 in code). We carry subarray till it gives positive sum.

Problem Statement​

Given an array arr[] of size N. The task is to find the sum of the contiguous subarray within a arr[] with the largest sum.

Examples​

Example 1:

Input: arr = {-2,-3,4,-1,-2,1,5,-3}
Output: 7
Explanation: The subarray {4,-1, -2, 1, 5} has the largest sum 7.

Example 2:

Input: arr = {2}
Output: 2
Explanation: The subarray {2} has the largest sum 2.

Brute Force Approach​

Intuition​

To print the subarray with the maximum sum the idea is to maintain start index of maximum_sum_ending_here at current index so that whenever maximum_sum_so_far is updated with maximum_sum_ending_here then start index and end index of subarray can be updated with start and current index.

Approach​

  • Initialize the variables s, start, and end with 0 and max_so_far = INT_MIN and max_ending_here = 0
  • Run a for loop from 0 to N-1 and for each index i:
  • Add the arr[i] to max_ending_here.
  • If max_so_far is less than max_ending_here then update max_so_far to max_ending_here and update start to s and end to i .
  • If max_ending_here < 0 then update max_ending_here = 0 and s with i+1. Print values from index start to end.
// C++ program to print largest contiguous array sum

#include <climits>
#include <iostream>
using namespace std;

void maxSubArraySum(int a[], int size)
{
int max_so_far = INT_MIN, max_ending_here = 0,
start = 0, end = 0, s = 0;

for (int i = 0; i < size; i++) {
max_ending_here += a[i];

if (max_so_far < max_ending_here) {
max_so_far = max_ending_here;
start = s;
end = i;
}

if (max_ending_here < 0) {
max_ending_here = 0;
s = i + 1;
}
}
cout << "Maximum contiguous sum is " << max_so_far
<< endl;
cout << "Starting index " << start << endl
<< "Ending index " << end << endl;
}

/*Driver program to test maxSubArraySum*/
int main()
{
int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
int n = sizeof(a) / sizeof(a[0]);
maxSubArraySum(a, n);
return 0;
}


// Java program to print largest
// contiguous array sum
import java.io.*;
import java.util.*;
class GFG {

static void maxSubArraySum(int a[], int size)
{
int max_so_far = Integer.MIN_VALUE,
max_ending_here = 0, start = 0, end = 0, s = 0;

for (int i = 0; i < size; i++) {
max_ending_here += a[i];

if (max_so_far < max_ending_here) {
max_so_far = max_ending_here;
start = s;
end = i;
}

if (max_ending_here < 0) {
max_ending_here = 0;
s = i + 1;
}
}
System.out.println("Maximum contiguous sum is "
+ max_so_far);
System.out.println("Starting index " + start);
System.out.println("Ending index " + end);
}

// Driver code
public static void main(String[] args)
{
int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
int n = a.length;
maxSubArraySum(a, n);
}
}




// Java program to print largest
// contiguous array sum
import java.io.*;
import java.util.*;
class GFG {

static void maxSubArraySum(int a[], int size)
{
int max_so_far = Integer.MIN_VALUE,
max_ending_here = 0, start = 0, end = 0, s = 0;

for (int i = 0; i < size; i++) {
max_ending_here += a[i];

if (max_so_far < max_ending_here) {
max_so_far = max_ending_here;
start = s;
end = i;
}

if (max_ending_here < 0) {
max_ending_here = 0;
s = i + 1;
}
}
System.out.println("Maximum contiguous sum is "
+ max_so_far);
System.out.println("Starting index " + start);
System.out.println("Ending index " + end);
}


public static void main(String[] args)
{
int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
int n = a.length;
maxSubArraySum(a, n);
}
}


Time Complexity : O(n)O(n)​

Spcae Complexity : O(1)O(1)​

Better Approach - Dynamic Programming​

Approach​

For each index i, DP[i] stores the maximum possible Largest Sum Contiguous Subarray ending at index i, and therefore we can calculate DP[i] using the mentioned state transition:

DP[i] = max(DP[i-1] + arr[i] , arr[i] )

// C++ program to print largest contiguous array sum
#include <bits/stdc++.h>
using namespace std;

void maxSubArraySum(int a[], int size)
{
vector<int> dp(size, 0);
dp[0] = a[0];
int ans = dp[0];
for (int i = 1; i < size; i++) {
dp[i] = max(a[i], a[i] + dp[i - 1]);
ans = max(ans, dp[i]);
}
cout << ans;
}

/*Driver program to test maxSubArraySum*/
int main()
{
int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
int n = sizeof(a) / sizeof(a[0]);
maxSubArraySum(a, n);
return 0;
}


import java.util.Arrays;

public class Main {
// Function to find the largest contiguous array sum
public static void maxSubArraySum(int[] a) {
int size = a.length;
int[] dp = new int[size]; // Create an array to store intermediate results
dp[0] = a[0]; // Initialize the first element of the intermediate array with the first element of the input array
int ans = dp[0]; // Initialize the answer with the first element of the intermediate array
for (int i = 1; i < size; i++) {
// Calculate the maximum of the current element and the sum of the current element and the previous result
dp[i] = Math.max(a[i], a[i] + dp[i - 1]);
// Update the answer with the maximum value encountered so far
ans = Math.max(ans, dp[i]);
}
// Print the maximum contiguous array sum
System.out.println(ans);
}

public static void main(String[] args) {
int[] a = { -2, -3, 4, -1, -2, 1, 5, -3 };
maxSubArraySum(a); // Call the function to find and print the maximum contiguous array sum
}
}

# Python program for the above approach

def max_sub_array_sum(a, size):
# Create a list to store intermediate results
dp = [0] * size

# Initialize the first element of the list with the first element of the array
dp[0] = a[0]

# Initialize the answer with the first element of the array
ans = dp[0]

# Loop through the array starting from the second element
for i in range(1, size):
# Choose the maximum value between the current element and the sum of the current element
# and the previous maximum sum (stored in dp[i - 1])
dp[i] = max(a[i], a[i] + dp[i - 1])

# Update the overall maximum sum
ans = max(ans, dp[i])

# Print the maximum contiguous subarray sum
print(ans)

# Driver program to test max_sub_array_sum
if __name__ == "__main__":
# Sample array
a = [-2, -3, 4, -1, -2, 1, 5, -3]

# Get the length of the array
n = len(a)

# Call the function to find the maximum contiguous subarray sum
max_sub_array_sum(a, n)

Time Complexity : O(n)O(n)​

Spcae Complexity : O(1)O(1)​

Optimal Approach (Kadane's Algorithm):​

Intuition​

The idea of Kadane’s algorithm is to maintain a variable max_ending_here that stores the maximum sum contiguous subarray ending at current index and a variable max_so_far stores the maximum sum of contiguous subarray found so far, Everytime there is a positive-sum value in max_ending_here compare it with max_so_far and update max_so_far if it is greater than max_so_far.

Steps​

Follow the below steps to Implement the idea:

  • Initialize the variables max_so_far = INT_MIN and max_ending_here = 0
  • Run a for loop from 0 to N-1 and for each index i:
  • Add the arr[i] to max_ending_here.
  • If max_so_far is less than max_ending_here then update max_so_far to max_ending_here.
  • If max_ending_here < 0 then update max_ending_here = 0
  • Return max_so_far

Implementing Kadane's Algorithm​

Python Implementation​

def GFG(a, size):
max_so_far = float('-inf')
# Use float('-inf') instead of maxint
max_ending_here = 0
for i in range(0, size):
max_ending_here = max_ending_here + a[i]
if max_so_far < max_ending_here:
max_so_far = max_ending_here
if max_ending_here < 0:
max_ending_here = 0
return max_so_far
# Driver function to check the above function
a = [-2, -3, 4, -1, -2, 1, 5, -3]
print("Maximum contiguous sum is", GFG(a, len(a)))

Java Implementation​

// Java program to print largest contiguous array sum
import java.io.*;
import java.util.*;

class Kadane {
// Driver Code
public static void main(String[] args)
{
int[] a = { -2, -3, 4, -1, -2, 1, 5, -3 };
System.out.println("Maximum contiguous sum is "
+ maxSubArraySum(a));
}

// Function Call
static int maxSubArraySum(int a[])
{
int size = a.length;
int max_so_far = Integer.MIN_VALUE, max_ending_here
= 0;

for (int i = 0; i < size; i++) {
max_ending_here = max_ending_here + a[i];
if (max_so_far < max_ending_here)
max_so_far = max_ending_here;
if (max_ending_here < 0)
max_ending_here = 0;
}
return max_so_far;
}
}

C++ Implementation​

// C++ program to print largest contiguous array sum
#include <bits/stdc++.h>
using namespace std;

int maxSubArraySum(int a[], int size)
{
int max_so_far = INT_MIN, max_ending_here = 0;

for (int i = 0; i < size; i++) {
max_ending_here = max_ending_here + a[i];
if (max_so_far < max_ending_here)
max_so_far = max_ending_here;

if (max_ending_here < 0)
max_ending_here = 0;
}
return max_so_far;
}

// Driver Code
int main()
{
int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
int n = sizeof(a) / sizeof(a[0]);

// Function Call
int max_sum = maxSubArraySum(a, n);
cout << "Maximum contiguous sum is " << max_sum;
return 0;
}

Complexity Analysis​

Time Complexity : O(n)O(n)​

Space Complexity : O(1)O(1)​

Conclusion​

  • Extended Kadane's Algorithm concludes by returning element of maximum contiguous.