Kadaney's Algorithm
Kadane's Algorithmβ
The idea of Kadaneβs algorithm is to maintain a variable max_ending_here that stores the maximum sum contiguous subarray ending at current index and a variable max_so_far stores the maximum sum of contiguous subarray found so far, Everytime there is a positive-sum value in max_ending_here compare it with max_so_far and update max_so_far if it is greater than max_so_far.
So the main Intuition behind Kadaneβs Algorithm is,
The subarray with negative sum is discarded (by assigning max_ending_here = 0 in code). We carry subarray till it gives positive sum.
Problem Statementβ
Given an array arr[]
of size N
. The task is to find the sum of the contiguous subarray within a arr[]
with the largest sum.
Examplesβ
Example 1:
Input: arr = {-2,-3,4,-1,-2,1,5,-3}
Output: 7
Explanation: The subarray {4,-1, -2, 1, 5} has the largest sum 7.
Example 2:
Input: arr = {2}
Output: 2
Explanation: The subarray {2} has the largest sum 2.
Brute Force Approachβ
Intuitionβ
To print the subarray with the maximum sum the idea is to maintain start index of maximum_sum_ending_here at current index so that whenever maximum_sum_so_far is updated with maximum_sum_ending_here then start index and end index of subarray can be updated with start and current index.
Approachβ
- Initialize the variables s, start, and end with 0 and max_so_far = INT_MIN and max_ending_here = 0
- Run a for loop from 0 to N-1 and for each index i:
- Add the arr[i] to max_ending_here.
- If max_so_far is less than max_ending_here then update max_so_far to max_ending_here and update start to s and end to i .
- If max_ending_here < 0 then update max_ending_here = 0 and s with i+1. Print values from index start to end.
// C++ program to print largest contiguous array sum
#include <climits>
#include <iostream>
using namespace std;
void maxSubArraySum(int a[], int size)
{
int max_so_far = INT_MIN, max_ending_here = 0,
start = 0, end = 0, s = 0;
for (int i = 0; i < size; i++) {
max_ending_here += a[i];
if (max_so_far < max_ending_here) {
max_so_far = max_ending_here;
start = s;
end = i;
}
if (max_ending_here < 0) {
max_ending_here = 0;
s = i + 1;
}
}
cout << "Maximum contiguous sum is " << max_so_far
<< endl;
cout << "Starting index " << start << endl
<< "Ending index " << end << endl;
}
/*Driver program to test maxSubArraySum*/
int main()
{
int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
int n = sizeof(a) / sizeof(a[0]);
maxSubArraySum(a, n);
return 0;
}
// Java program to print largest
// contiguous array sum
import java.io.*;
import java.util.*;
class GFG {
static void maxSubArraySum(int a[], int size)
{
int max_so_far = Integer.MIN_VALUE,
max_ending_here = 0, start = 0, end = 0, s = 0;
for (int i = 0; i < size; i++) {
max_ending_here += a[i];
if (max_so_far < max_ending_here) {
max_so_far = max_ending_here;
start = s;
end = i;
}
if (max_ending_here < 0) {
max_ending_here = 0;
s = i + 1;
}
}
System.out.println("Maximum contiguous sum is "
+ max_so_far);
System.out.println("Starting index " + start);
System.out.println("Ending index " + end);
}
// Driver code
public static void main(String[] args)
{
int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
int n = a.length;
maxSubArraySum(a, n);
}
}
// Java program to print largest
// contiguous array sum
import java.io.*;
import java.util.*;
class GFG {
static void maxSubArraySum(int a[], int size)
{
int max_so_far = Integer.MIN_VALUE,
max_ending_here = 0, start = 0, end = 0, s = 0;
for (int i = 0; i < size; i++) {
max_ending_here += a[i];
if (max_so_far < max_ending_here) {
max_so_far = max_ending_here;
start = s;
end = i;
}
if (max_ending_here < 0) {
max_ending_here = 0;
s = i + 1;
}
}
System.out.println("Maximum contiguous sum is "
+ max_so_far);
System.out.println("Starting index " + start);
System.out.println("Ending index " + end);
}
public static void main(String[] args)
{
int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
int n = a.length;
maxSubArraySum(a, n);
}
}
Time Complexity : β
Spcae Complexity : β
Better Approach - Dynamic Programmingβ
Approachβ
For each index i
, DP[i]
stores the maximum possible Largest Sum Contiguous Subarray ending at index i
, and therefore we can calculate DP[i]
using the mentioned state transition:
DP[i] = max(DP[i-1] + arr[i] , arr[i] )
// C++ program to print largest contiguous array sum
#include <bits/stdc++.h>
using namespace std;
void maxSubArraySum(int a[], int size)
{
vector<int> dp(size, 0);
dp[0] = a[0];
int ans = dp[0];
for (int i = 1; i < size; i++) {
dp[i] = max(a[i], a[i] + dp[i - 1]);
ans = max(ans, dp[i]);
}
cout << ans;
}
/*Driver program to test maxSubArraySum*/
int main()
{
int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
int n = sizeof(a) / sizeof(a[0]);
maxSubArraySum(a, n);
return 0;
}
import java.util.Arrays;
public class Main {
// Function to find the largest contiguous array sum
public static void maxSubArraySum(int[] a) {
int size = a.length;
int[] dp = new int[size]; // Create an array to store intermediate results
dp[0] = a[0]; // Initialize the first element of the intermediate array with the first element of the input array
int ans = dp[0]; // Initialize the answer with the first element of the intermediate array
for (int i = 1; i < size; i++) {
// Calculate the maximum of the current element and the sum of the current element and the previous result
dp[i] = Math.max(a[i], a[i] + dp[i - 1]);
// Update the answer with the maximum value encountered so far
ans = Math.max(ans, dp[i]);
}
// Print the maximum contiguous array sum
System.out.println(ans);
}
public static void main(String[] args) {
int[] a = { -2, -3, 4, -1, -2, 1, 5, -3 };
maxSubArraySum(a); // Call the function to find and print the maximum contiguous array sum
}
}
# Python program for the above approach
def max_sub_array_sum(a, size):
# Create a list to store intermediate results
dp = [0] * size
# Initialize the first element of the list with the first element of the array
dp[0] = a[0]
# Initialize the answer with the first element of the array
ans = dp[0]
# Loop through the array starting from the second element
for i in range(1, size):
# Choose the maximum value between the current element and the sum of the current element
# and the previous maximum sum (stored in dp[i - 1])
dp[i] = max(a[i], a[i] + dp[i - 1])
# Update the overall maximum sum
ans = max(ans, dp[i])
# Print the maximum contiguous subarray sum
print(ans)
# Driver program to test max_sub_array_sum
if __name__ == "__main__":
# Sample array
a = [-2, -3, 4, -1, -2, 1, 5, -3]
# Get the length of the array
n = len(a)
# Call the function to find the maximum contiguous subarray sum
max_sub_array_sum(a, n)
Time Complexity : β
Spcae Complexity : β
Optimal Approach (Kadane's Algorithm):β
Intuitionβ
The idea of Kadaneβs algorithm is to maintain a variable max_ending_here that stores the maximum sum contiguous subarray ending at current index and a variable max_so_far stores the maximum sum of contiguous subarray found so far, Everytime there is a positive-sum value in max_ending_here compare it with max_so_far and update max_so_far if it is greater than max_so_far.
Stepsβ
Follow the below steps to Implement the idea:
- Initialize the variables max_so_far = INT_MIN and max_ending_here = 0
- Run a for loop from 0 to N-1 and for each index i:
- Add the arr[i] to max_ending_here.
- If max_so_far is less than max_ending_here then update max_so_far to max_ending_here.
- If max_ending_here < 0 then update max_ending_here = 0
- Return max_so_far
Implementing Kadane's Algorithmβ
Python Implementationβ
def GFG(a, size):
max_so_far = float('-inf')
# Use float('-inf') instead of maxint
max_ending_here = 0
for i in range(0, size):
max_ending_here = max_ending_here + a[i]
if max_so_far < max_ending_here:
max_so_far = max_ending_here
if max_ending_here < 0:
max_ending_here = 0
return max_so_far
# Driver function to check the above function
a = [-2, -3, 4, -1, -2, 1, 5, -3]
print("Maximum contiguous sum is", GFG(a, len(a)))
Java Implementationβ
// Java program to print largest contiguous array sum
import java.io.*;
import java.util.*;
class Kadane {
// Driver Code
public static void main(String[] args)
{
int[] a = { -2, -3, 4, -1, -2, 1, 5, -3 };
System.out.println("Maximum contiguous sum is "
+ maxSubArraySum(a));
}
// Function Call
static int maxSubArraySum(int a[])
{
int size = a.length;
int max_so_far = Integer.MIN_VALUE, max_ending_here
= 0;
for (int i = 0; i < size; i++) {
max_ending_here = max_ending_here + a[i];
if (max_so_far < max_ending_here)
max_so_far = max_ending_here;
if (max_ending_here < 0)
max_ending_here = 0;
}
return max_so_far;
}
}
C++ Implementationβ
// C++ program to print largest contiguous array sum
#include <bits/stdc++.h>
using namespace std;
int maxSubArraySum(int a[], int size)
{
int max_so_far = INT_MIN, max_ending_here = 0;
for (int i = 0; i < size; i++) {
max_ending_here = max_ending_here + a[i];
if (max_so_far < max_ending_here)
max_so_far = max_ending_here;
if (max_ending_here < 0)
max_ending_here = 0;
}
return max_so_far;
}
// Driver Code
int main()
{
int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
int n = sizeof(a) / sizeof(a[0]);
// Function Call
int max_sum = maxSubArraySum(a, n);
cout << "Maximum contiguous sum is " << max_sum;
return 0;
}
Complexity Analysisβ
Time Complexity : β
Space Complexity : β
Conclusionβ
- Extended Kadane's Algorithm concludes by returning element of maximum contiguous.