Skip to main content

MongoDB - Analyzing Queries

Analyzing queries is a very important aspect of measuring how effective the database and indexing design is. We will learn about the frequently used $explain and $hint queries.

Using $explain​

The $explain operator provides information on the query, indexes used in a query, and other statistics. It is very useful when analyzing how well your indexes are optimized.

In the last chapter, we had already created an index for the users collection on fields gender and user_name using the following query:

db.users.createIndex({gender:1,user_name:1})
{
"numIndexesBefore" : 2,
"numIndexesAfter" : 2,
"note" : "all indexes already exist",
"ok" : 1
}

We will now use $explain on the following query:

db.users.find({gender:"M"},{user_name:1,_id:0}).explain()

The above explain() query returns the following analyzed result:

{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "mydb.users",
"indexFilterSet" : false,
"parsedQuery" : {
"gender" : {
"$eq" : "M"
}
},
"queryHash" : "B4037D3C",
"planCacheKey" : "DEAAE17C",
"winningPlan" : {
"stage" : "PROJECTION_COVERED",
"transformBy" : {
"user_name" : 1,
"_id" : 0
},
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"gender" : 1,
"user_name" : 1
},
"indexName" : "gender_1_user_name_1",
"isMultiKey" : false,
"multiKeyPaths" : {
"gender" : [ ],
"user_name" : [ ]
},
"isUnique" : false,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 2,
"direction" : "forward",
"indexBounds" : {
"gender" : [
"[\"M\", \"M\"]"
],
"user_name" : [
"[MinKey, MaxKey]"
]
}
}
},
"rejectedPlans" : [ ]
},
"serverInfo" : {
"host" : "Krishna",
"port" : 27017,
"version" : "4.2.1",
"gitVersion" : "edf6d45851c0b9ee15548f0f847df141764a317e"
},
"ok" : 1
}

We will now look at the fields in this result set:

  • queryPlanner: Contains details about the query plan, indexes used, and stages involved in executing the query.
  • indexOnly: Indicates whether the query was covered by an index.
  • cursor: Specifies the type of cursor used (e.g., BTreeCursor for indexed queries).
  • n: Indicates the number of documents matching the query.
  • nscannedObjects: Indicates the total number of documents scanned.
  • nscanned: Indicates the total number of documents or index entries scanned.

Using $hint​

The $hint operator forces the query optimizer to use the specified index to run a query. This is particularly useful when you want to test the performance of a query with different indexes. For example, the following query specifies the index on fields gender and user_name to be used for this query:

db.users.find({gender:"M"},{user_name:1,_id:0}).hint({gender:1,user_name:1})
{ "user_name" : "tombenzamin" }

To analyze the above query using $explain:

db.users.find({gender:"M"},{user_name:1,_id:0}).hint({gender:1,user_name:1}).explain()

Which gives you the following result:

{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "mydb.users",
"indexFilterSet" : false,
"parsedQuery" : {
"gender" : {
"$eq" : "M"
}
},
"queryHash" : "B4037D3C",
"planCacheKey" : "DEAAE17C",
"winningPlan" : {
"stage" : "PROJECTION_COVERED",
"transformBy" : {
"user_name" : 1,
"_id" : 0
},
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"gender" : 1,
"user_name" : 1
},
"indexName" : "gender_1_user_name_1",
"isMultiKey" : false,
"multiKeyPaths" : {
"gender" : [ ],
"user_name" : [ ]
},
"isUnique" : false,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 2,
"direction" : "forward",
"indexBounds" : {
"gender" : [
"[\"M\", \"M\"]"
],
"user_name" : [
"[MinKey, MaxKey]"
]
}
}
},
"rejectedPlans" : [ ]
},
"serverInfo" : {
"host" : "Krishna",
"port" : 27017,
"version" : "4.2.1",
"gitVersion" : "edf6d45851c0b9ee15548f0f847df141764a317e"
},
"ok" : 1
}

Diagram​

Summary Table​

OperatorDescriptionUsage Example
$explainProvides information on query execution, indexes used, and statsdb.users.find({gender:"M"},{user_name:1,_id:0}).explain()
$hintForces the query to use a specified indexdb.users.find({gender:"M"},{user_name:1,_id:0}).hint({gender:1,user_name:1})